A Polynomial Time Algorithm for Solving the Closest Vector Problem in Zonotopal Lattices
نویسندگان
چکیده
In this note we give a polynomial time algorithm for solving the closest vector problem in class of zonotopal lattices. The Voronoi cell lattice is zonotope, i.e. projection regular cube. Examples lattices include Voronoi's first kind and tensor products root type A. combinatorial structure can be described by matroids/totally unimodular matrices. We observe that linear algebra version minimum mean cycle canceling method applied efficiently if given as integral kernel totally matrix.
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe Closest Vector Problem on Some Lattices
The closest vector problem for general lattices is NP-hard. However, we can efficiently find the closest lattice points for some special lattices, such as root lattices (An, Dn and some En). In this paper, we discuss the closest vector problem on more general lattices than root lattices.
متن کاملSolving the Closest Vector Problem with respect to ℓp Norms
We present deterministic polynomially space bounded algorithms for the closest vector problem for all lp-norms, 1 < p < ∞, and all polyhedral norms, in particular for the l1norm and the l∞-norm. For all lp-norms with 1 < p < ∞ the running time of the algorithm is p · log2(r)n, where r is an upper bound on the size of the coefficients of the target vector and the lattice basis and n is the dimen...
متن کاملClosest Vector Problem
The Closest Vector Problem (CVP) is a computational problem on lattices closely related to SVP. (See Shortest Vector Problem.) Given a lattice L and a target point ~x, CVP asks to find the lattice point closest to the target. As for SVP, CVP can be defined with respect to any norm, but the Euclidean norm is the most common (see the entry lattice for a definition). A more relaxed version of the ...
متن کاملThe closest vector problem in tensored root lattices of type A and in their duals
In this work we consider the closest vector problem (CVP) —a problem also known as maximum-likelihood decoding— in the tensor of two root lattices of type A (Am⊗An), as well as in their duals (Am⊗An). This problem is mainly motivated by lattice based cryptography, where the cyclotomic rings Z[ζc] (resp. its co-different Z[ζc]) play a central role, and turn out to be isomorphic as lattices to te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Discrete Mathematics
سال: 2021
ISSN: ['1095-7146', '0895-4801']
DOI: https://doi.org/10.1137/20m1382258